| inviato il 13 Settembre 2020 ore 9:33
“ Cosa intende esattamente al punto 2? A me sembra lapalissiano che i piani paralleli alla pellicola (oggi sensore) non siano distorti - ad esempio, una finestra sulla facciata di un edificio sarà riprodotta rispettando le proporzioni - ma non capisco in quali casi ciò non avvenga. Ad esempio, usando un fish-eye? „ Infatti è un'affermazione ovvia. |
user177356 | inviato il 13 Settembre 2020 ore 9:49
“ Non avviene ad esempio quando fotografi un edificio dal basso con un grandangolo. „ Per capire se ho capito: se la facciata presenta finestre tutte uguali, quelle dei piani superiori risulteranno "schiacciate" rispetto a quelle del piano terra, in modo proporzionale all'altezza da terra? |
| inviato il 13 Settembre 2020 ore 10:01
“ Per capire se ho capito: se la facciata presenta finestre tutte uguali, quelle dei piani superiori risulteranno "schiacciate" rispetto a quelle del piano terra, in modo proporzionale all'altezza da terra? „ Risultano convergenti verso un punto di arrivo.Non parallele |
| inviato il 13 Settembre 2020 ore 10:07
“ Risultano convergenti verso un punto di arrivo.Non parallele „ Se soggetto e sensore sono paralleli (che è la condizione del punto 2, oggetto della domanda di TheRealB) tutte le linee parallele (verticali o non) non convergono ma rimangono parallele, a parte naturalmente le distorsioni ottiche dell'obiettivo. |
| inviato il 13 Settembre 2020 ore 10:17
“ Se soggetto e sensore sono paralleli (che è la condizione del punto 2, oggetto della domanda di TheRealB) tutte le linee parallele (verticali o non) non convergono ma rimangono parallele, „ esatto,nella pagina precedente l'avevo specificato “ Non avviene ad esempio quando fotografi un edificio dal basso con un grandangolo.In questo caso le linee non convergono con il piano della pellicola-sensore.Per evitarlo dovresti allontanarti e cercare un punto di ripresa più alto possibilmente rispettando le linee parallele (ecco perchè senza approfondire si dice che i grandangoli distorcono),oppure usare una focale più lunga da una distanza più lunga „ |
user177356 | inviato il 13 Settembre 2020 ore 10:53
Alba, a questo punto sono certo che sei tu a fare confusione. Il punto 2 recita: "i piani del soggetto paralleli al piano della pellicola sono resi senza distorsione prospettica". Se sono paralleli alla pellicola/sensore, le linee (orizzontali o verticali che siano) che appartengono a tali piani NON convergono. Quindi, per distorsione prospettica Feininger deve intendere qualcos'altro. Immagino si riferisca a obiettivi non lineari, come i fish-eye, ma vorrei averne conferma. |
| inviato il 13 Settembre 2020 ore 10:57
Hai ragione. Nella mia seconda frase c'è un NON di troppo |
| inviato il 13 Settembre 2020 ore 11:33
“ Cosa intende esattamente al punto 2? A me sembra lapalissiano che i piani paralleli alla pellicola (oggi sensore) non siano distorti - ad esempio, una finestra sulla facciata di un edificio sarà riprodotta rispettando le proporzioni - ma non capisco in quali casi ciò non avvenga. Ad esempio, usando un fish-eye? „ Si certo, coi "i piani del soggetto paralleli al piano della pellicola"; ovvero col l'asse ottico parallelo al terreno e perpendicolare alla facciata di un edificio*, sia i rapporti tra larghezza e altezza della facciata che le proporzioni di porte e finestre sono resi rispettando le proporzioni. Ciò, beninteso, usando un obiettivo rettilineare. Ovviamente con un fish-eye le cose cambiano radicalmente (e altrettanto ovviamente il fish-eye ti fornisce una prospettiva "sferica" e non "rettilinea"). E' laplissiano ma qui Feiniger parte proprio dall'ABC. In questa foto, che ho già postato qualche ora fa: www.juzaphoto.com/galleria.php?t=3712248&l=it porte e finestre del Duomo sono riprodotte rispettando le proporzioni. Lo stesso dicasi qui: www.juzaphoto.com/galleria.php?l=it&t=3115023 Questo tipo di foto è quanto c'è di più simile a un prospetto, ovvero la rappresentazione canonica delle facciate. Questa con un grandangolo estremo (non era possibile star più lontani dalla facciata): www.juzaphoto.com/galleria.php?l=it&t=3484224 Il portale e le finestre sono riprodotte rispettando le proporzioni. Ma il cornicione e i frontoni delle finestre appaiono più sporgenti di quanto non siano man mano che ci avviciniamo ai bordi, e questo per via della deformazione laterale o anamorfica**. Se invece fotografi un edificio dal basso con l'asse ottico orientato verso l'alto, come in questa: www.juzaphoto.com/galleria.php?l=it&t=1115702 con le verticali che convergono verso un punto di fuga, ecco che, sempre lapalissianamente, la distanza tra bordo superiore e inferiore di ogni finestra dimunisce quanto più la finestra è in alto. Ma qui abbiamo quella che Feiniger chiama "prospettiva rettilinea reale", contrapposta alla "rettilinea accedemica" dei primi tre esempi. * Parliamo di una facciata "semplice", con il muro "a piombo" e rettilineo in pianta. Con un edificio, ad esempio, di Frank Gehry le cose si complicano alquanto. ** Di ciò ne parlo qui. www.juzaphoto.com/topic2.php?l=it&show=2&t=2021307#9776717 www.juzaphoto.com/topic2.php?l=it&show=4&t=2021307#9787996 www.juzaphoto.com/topic2.php?l=it&show=5&t=2021307#9795544 Qui ho ripreso l'argomento: www.juzaphoto.com/topic2.php?l=it&show=3&t=2475791#13189786 In questo tutorial di DXO ViewPoint viene trattato lo stesso problema e si mostra come, tramite il software in questione, la deformazione marginale viene corretta rinunciando ad una prospettiva rigorosamente rettilinea: www.dxo.com/project/understanding-volume-deformation/ |
| inviato il 13 Settembre 2020 ore 11:35
“ Quindi, per distorsione prospettica Feininger deve intendere qualcos'altro. Immagino si riferisca a obiettivi non lineari, come i fish-eye, ma vorrei averne conferma. „ Penso anch'io che intendesse questo. Infatti, più avanti, nello stesso testo, parla di fish-eye e di prospettiva sferica. |
user177356 | inviato il 13 Settembre 2020 ore 11:47
“ per via della deformazione laterale o anamorfica „ "Laterale" per la forma rettangolare del sensore, giusto? Il problema è la distanza dal centro, se non ho capito male. Provo a spiegarmi con un esempio: se fotografo dalla strada (diciamo da 160 cm di altezza) con sensore perpendicolare al terreno la facciata di un edificio con finestratura regolare, le finestre dell'ultimo piano risulteranno nella fotografia più basse di quelle del piano terra. O sbaglio? |
| inviato il 13 Settembre 2020 ore 13:04
“ "Laterale" per la forma rettangolare del sensore, giusto? Il problema è la distanza dal centro, se non ho capito male. „ La si definisce deformazione, a volte "laterale" (e qui entra appunto in ballo la forma rettangolare della maggior parte dei fotogrammi e sensori), a volte "marginale" oppure "anamorfica". Ma sempre dello stesso fenomeno si tratta. Non hai capito male, si manifersta quanto più ti allontani dal centro e la si nota molto di più nei grandangoli spinti (oppure decentrabili quando sono decentrati) proprio perchè rendono possibile includere nella composizione oggetti lontanissimi dal centro. |
| inviato il 13 Settembre 2020 ore 13:27
Questo rimanda appunto al problema del carattere decisamente artificiale di ogni rappresentazione in prospettiva rettilinea, sia di tipo grafico che fotografico. Andreas Feininger affronta qui questo tema, in particolare quando parla di "menzogne positive della macchina fotografica": www.juzaphoto.com/topic2.php?l=it&show=9&t=1780926#8408592 Se mi è concesso un po' di copia-incolla da un mio vecchio post, e precisamente da questo www.juzaphoto.com/topic2.php?l=it&show=3&t=2002244#9671613 Anche Feininger lo dice chiaramente, nella parte finale del brano a cui ho messo il link, che la prospettiva rettilinea accademica è una rappresentazione artificiale, lo sottolinea con il termine stesso, contrapposto a rettilinea reale, ovvero quella in cui le linee verticali sono lasciate inclinate. Ma precedentemente sosteneva che qualsiasi prospettiva rettilinea è un artificio: "l'unica prospettiva fotografica vera è quella in cui le linee rette nella realtà sono riprodotte come curve, e tanto più curve quanto più distano dall'asse verticale e dall'asse orizzontale dell'immagine, i soli luoghi in cui le linee appaiono rette. (...) Per quanto possa sembrare paradossale, la sola prospettiva che la maggior parte dei fotografi ritiene corretta - la prospettiva lineare - è quella che dà raffigurazioni distorte della realtà, mentre la prospettiva curvilinea, comunemente considerata la distorsione estrema, raffigura il mondo come è in realtà". Ritengo che le aberrazioni marginali, che si hanno con la prospettiva rettilinea, siano da mettere in relazione con questa forzatura rispetto alla percezione reale. Ciò nonostante ricordiamo che Andreas Feininger, nella sua brillantissima carriera di fotografo, ha utilizzato soprattutto obiettivi rettilineari, che quindi producevano una prospettiva rettilinea. ... Scrive in infatti Feininger, nel testo a cui ho giù messo il link, ovvero L'occhio del fotografo (Milano, Garzanti, 1976 - Op. orig: Photographic seeing , 1973), p.68: "Ecco un altro esempio di 'menzogna positiva' familiare a tutti i fotografi: le immagini di edifici le cui pareti appaiono non già verticali, ma inclinate, perché si è scattata la foto puntando l'apparecchio verso l'alto. Questa convergenza di linee nella realtà parallele è una manifestazione perfettamente naturale della prospettiva, perfettamente accettata dall'occhio quando si presenta sul piano orizzontale (i binari della ferrovia!) ma non altrettanto accettabile se si presenta in un piano verticale. Questa apparente convergenza delle linee verticali può essere facilmente corretta, in fotografia, sia direttamente sul negativo al momento dell'esposizione, grazie ad apparecchi muniti di basculaggio e dentramento. sia in fase di ingrandimento, ma l'immagine che ne risulta non è più 'vera' nel senso più rigoroso del termine. Tuttavia la maggior parte della gente preferisce questa 'menzogna positiva' a una foto che riproduce l'edificio come appare nella realtà." Si ricordi che Andreas Feininger si laureò negli anni '20 alla Bauhaus in cui la Gestaltpsychologie era tenuta in gran conto, quindi aveva probabilmente interiorizzato, fin da allora, le problematiche della complessa interazione tra occhio e cervello. Significative in proposito queste considerazioni (in Cit. pp. 66-67): "La macchina fotografica, essendo appunto una macchina, non può mentire; quindi qualunque fotografia non manipolata, per quanto strana, deve sostanzialmente essere vera. D'altre parte l'occhio, controllato dal cervello e dalla mente dell'uomo, a volte vede la realtà in modo diverso dall'obiettivo fotografico, per cui una fotografia 'vera' può apparire 'falsa'. In altre parole è l'occhio che mente, o piuttosto ci inganna. Quindi per far si che l'impressione evocata in noi da un'immagine corrisponda a quella evocata dalla realtà, un fotografo deve 'costringere la macchina fotografica a mentire'. La fotografia risultante sarà allora una 'menzogna positiva', positiva perché la menzogna, in questo caso, serve a un scopo positivo." |
user177356 | inviato il 13 Settembre 2020 ore 13:59
“ Questo rimanda appunto al problema del carattere decisamente artificiale di ogni rappresentazione in prospettiva rettilinea, sia di tipo grafico che fotografico. „ Anche Panofsky (che ho conosciuto per tuo tramite) parla di "astrazione" dello spazio psico-fisiologico, perché presuppone un occhio fisso e con una superficie di proiezione piatta (quindi, una macchina fotografica) invece che due occhi continuamente mobili e con una retina curvilinea. Volendo semplificare molto, i nostri occhi vedono come un fish-eye ma il cervello "raddrizza" le linee ai margini del campo visivo perché sa che gli oggetti che vi compaiono hanno spigoli rettilinei. |
user177356 | inviato il 13 Settembre 2020 ore 14:15
A proposito di deformazione laterale/marginale, questo schema (tratto da Panofsky) la spiega in modo chiaro:
 I segmenti x, y e z di lunghezza diversa appaiono uguali se proiettati su una superficie curvilinea (retina) ma diversi se proiettati su un piano (sensore fotografico). |
| inviato il 13 Settembre 2020 ore 15:18
Seguo e cerco i libri di feininger. Grazie |
Che cosa ne pensi di questo argomento?Vuoi dire la tua? Per partecipare alla discussione iscriviti a JuzaPhoto, è semplice e gratuito!
Non solo: iscrivendoti potrai creare una tua pagina personale, pubblicare foto, ricevere commenti e sfruttare tutte le funzionalità di JuzaPhoto. Con oltre 251000 iscritti, c'è spazio per tutti, dal principiante al professionista. |

Metti la tua pubblicità su JuzaPhoto (info) |