| inviato il 27 Agosto 2018 ore 23:20
@val fino ad oggi sono stato convinto che passata l'ottica tutto quello che arriva sul sensore veniva campionato, ovviamente prima di nyquist invece mi dici che della luce che arriva con la sua modulazione puoi ancora calcolarne un MTF sensore di cui ignoravo l'esistenza. La funzione sync esce fuori perchè sarà la trasformata di una funzione boxcar? Sarà per caso la luce che gli arriva modulata come una funzione boxcar? Dopodichè a questa funzione sync metti come valore x dell'espressione di Bracewell quello che mi hai scritto ovvero F e N... ottenuto il numeretto 0.9 tipo lo moltiplichi per quello che si legge dal mtf dell'ottica corretto? |
| inviato il 28 Agosto 2018 ore 2:18
@Vala a esibire modulazione è la mira ottica stessa. L'obiettivo trasferisce questa modulazione al sensore che campiona per poi ricostruire la mira. Per farlo deve obbedire a Nyquist o meglio l'analogo di Nyquist nei domini tempo/frequenza sostituiti dai domini spazio/frequenza spaziale. Il periodo completo di una sinusoide nel tempo è un ciclo, bisogna avere due punti per ogni periodo (ciclo) per risalire alla frequenza correttamente. Un ciclo è una linea bianca e una nera nello spazio. Un sensel deve descrivere una sola linea, o bianca o nera. Ci vogliono due sensel (o pixel) per descrivere la frequenza massima spaziale presente nella mira. I fotografi non ragionano in cicli/pixel, bensì in lp/mm. Con un sensel (pixel) da 10 micron, la frequenza di taglio di 100 l/mm diventa 50 lp/mm secondo Nyquist. Tutto le frequenze spaziali superiori a Nyquist provocano aliasing che si traduce in spurie che degradano l'immagine, il microcontrasto in particolare. Quando nella formula F=1 (cioè si è a Nyquist per un dato sensel) MTF(sensore)=0.6366...Questo valore è identico per qualsiasi sensore a Nyquist. Se entrano le spurie oltre Nyquist, MTF(sensore) diventa < 0.6366. Idealmente ci si dovrebbe avvicinare a MTF(sensore)=1, ma ad un certo punto entra in campo la diffrazione Tutto questo per confermare che la MTF dell'obiettivo (indipendente dal sensore) va moltiplicata per la MTF del sensore, è il miracolo delle MTF che tramutano convoluzioni nel dominio spazio in moltiplicazioni nel dominio frequenze spaziali. La cosa non finisce lì, poi c'è la MTF dello schermo o della stampa e la MTF della visione umana, tutte MTF moltiplicate fra loro per dare una misura oggettiva della qualità percepita della immagine. |
| inviato il 28 Agosto 2018 ore 2:33
Ok a moltiplicare le varie mtf Non sapevo dell'esistenza di una mtf sensore . Nella prima parte del tuo intervento parli di nyquist ed ero convinto che prima di nyquist tutto quello che l ottica portava, il sensore la campionava. Come se mtf sensore fosse sempre 1 Invece mi dici che arriva amche a 0.636 utilizzando bracewell coi parametri dati.. quello che non ho capito è questa sync funct da dove salta fuori allora... scusa se sono ottuso È il frutto di una trasformata? |
| inviato il 28 Agosto 2018 ore 2:47
Cioè tipo nyquist facciamo 100 lp mm Se ho una informazione a 30 lo mm penso a logica che la campiono senza problemi infatti il tuo fattore è 0.93 insomma quasi 1 Oggi scopro che vicino nyquist scende a 0.6 perché così viene dalla funzione che hai scritto (sync con quei fattori f n pi ) E mi incuriosisce capire chi causa questo peggioramento visto che pensavo che entro nyquist tutto era campionato e che oltre nyquist il problema fosse l aliasing |
| inviato il 28 Agosto 2018 ore 8:07
@Vala c'è sempre di mezzo una sinc quando campioni. Qualsiasi sensore ha MTF=1 quando campiona qualcosa che non ha frequenze spaziali, metti un colore solido unico. Già se hai un campione metà bianco e metà nero sei di fronte a frequenze spaziali. Forse l'esempio più semplice è un WAV. Un segnale sonoro si campiona poco oltre i 40Khz perché si vuole ricostruire uno spettro fino a 20 Khz (frequenza top che si smette di udire quando non si è più teen-agers ). Notare che la banda è filtrata (altrimenti Nyquist va in palla, una tromba arriva a 104 Khz). Non è mai l'esatta frequenza Nyquist (20*2=40kHz), si va di 42 o 44 kHz. Lo stesso in fotografia, più si è lontani da Nyquist meglio è, lo mostra la sinc. La sinc non è altro che la FT della finestra di campionamento che è di per sé rettangolare e per questo gli elettronici la chiamano boxcar (ha il profilo simile a un vagone merci). Vero che la frequenza di una sinusoide pura si ricostruisce con due punti per ciclo, ma poi hai bisogno anche di intensità precise, per questo si usano più punti. Quindi a Nyquist ricostruisci la frequenza, ma hai problemi con l'intensità. Non è la stessissima cosa ma un orecchio allenato distingue musica in mp3 a 64, 128, 192, 320 kb/s. JPEG e MP3 sono entrambi nipoti di nonna FT |
| inviato il 28 Agosto 2018 ore 12:38
grazie val ora ti lascio in pace mi hai guidato nella conoscenza fino al punto dove è giusto se uno vuole approfondire di prendersi in mano un libro... |
Che cosa ne pensi di questo argomento?Vuoi dire la tua? Per partecipare alla discussione iscriviti a JuzaPhoto, è semplice e gratuito!
Non solo: iscrivendoti potrai creare una tua pagina personale, pubblicare foto, ricevere commenti e sfruttare tutte le funzionalità di JuzaPhoto. Con oltre 251000 iscritti, c'è spazio per tutti, dal principiante al professionista. |

Metti la tua pubblicità su JuzaPhoto (info) |